模拟僵尸末日

日期2011-04-24(最后修改),2011-04-24(创建)

此示例演示了如何使用 SciPy 求解一阶常微分方程组。请注意,可以使用 SciPy 求解 N 阶方程,方法是将其转换为一阶方程组。在这个轻松的示例中,可以使用常微分方程组来模拟“僵尸入侵”,使用Munz 等人 2009 年中指定的方程。

该系统表示为

dS/dt = P - BSZ - dS dZ/dt = BSZ + GR - ASZ dR/dt = dS + ASZ - GR

使用以下符号

  • S:易感受害者人数
  • Z:僵尸人数
  • R:被“杀死”的人数
  • P:人口出生率
  • d:自然死亡的可能性
  • B:“僵尸病”传播的可能性(活人变成僵尸)
  • G:死者复活成僵尸的可能性
  • A:僵尸被完全消灭的可能性

这涉及求解由以下公式给出的常微分方程组:dy/dt = f(y, t)

其中y = [S, Z, R]。

用于解决此系统的代码如下

在 [1]
# zombie apocalypse modeling
import numpy as np
import matplotlib.pyplot as plt
from scipy.integrate import odeint
plt.ion()
plt.rcParams['figure.figsize'] = 10, 8

P = 0      # birth rate
d = 0.0001  # natural death percent (per day)
B = 0.0095  # transmission percent  (per day)
G = 0.0001  # resurect percent (per day)
A = 0.0001  # destroy percent  (per day)

# solve the system dy/dt = f(y, t)
def f(y, t):
     Si = y[0]
     Zi = y[1]
     Ri = y[2]
     # the model equations (see Munz et al. 2009)
     f0 = P - B*Si*Zi - d*Si
     f1 = B*Si*Zi + G*Ri - A*Si*Zi
     f2 = d*Si + A*Si*Zi - G*Ri
     return [f0, f1, f2]

# initial conditions
S0 = 500.              # initial population
Z0 = 0                 # initial zombie population
R0 = 0                 # initial death population
y0 = [S0, Z0, R0]     # initial condition vector
t  = np.linspace(0, 5., 1000)         # time grid

# solve the DEs
soln = odeint(f, y0, t)
S = soln[:, 0]
Z = soln[:, 1]
R = soln[:, 2]

# plot results
plt.figure()
plt.plot(t, S, label='Living')
plt.plot(t, Z, label='Zombies')
plt.xlabel('Days from outbreak')
plt.ylabel('Population')
plt.title('Zombie Apocalypse - No Init. Dead Pop.; No New Births.')
plt.legend(loc=0)

# change the initial conditions
R0 = 0.01*S0   # 1% of initial pop is dead
y0 = [S0, Z0, R0]

# solve the DEs
soln = odeint(f, y0, t)
S = soln[:, 0]
Z = soln[:, 1]
R = soln[:, 2]

plt.figure()
plt.plot(t, S, label='Living')
plt.plot(t, Z, label='Zombies')
plt.xlabel('Days from outbreak')
plt.ylabel('Population')
plt.title('Zombie Apocalypse - 1% Init. Pop. is Dead; No New Births.')
plt.legend(loc=0)

# change the initial conditions
R0 = 0.01*S0   # 1% of initial pop is dead
P  = 10        # 10 new births daily
y0 = [S0, Z0, R0]

# solve the DEs
soln = odeint(f, y0, t)
S = soln[:, 0]
Z = soln[:, 1]
R = soln[:, 2]

plt.figure()
plt.plot(t, S, label='Living')
plt.plot(t, Z, label='Zombies')
plt.xlabel('Days from outbreak')
plt.ylabel('Population')
plt.title('Zombie Apocalypse - 1% Init. Pop. is Dead; 10 Daily Births')
plt.legend(loc=0)
输出[1]
<matplotlib.legend.Legend at 0x392ac90>

章节作者:ChristopherCampo