矩阵的秩和零空间¶
日期 | 2011-09-14 (最后修改), 2011-09-14 (创建) |
---|
以下模块,rank_nullspace.py,提供了 rank() 和 nullspace() 函数。(注意,!NumPy 已经提供了 matrix_rank() 函数;这里给出的函数允许指定绝对容差和相对容差。)
rank_nullspace.py
In [ ]
#!python
import numpy as np
from numpy.linalg import svd
def rank(A, atol=1e-13, rtol=0):
"""Estimate the rank (i.e. the dimension of the nullspace) of a matrix.
The algorithm used by this function is based on the singular value
decomposition of `A`.
Parameters
----------
A : ndarray
A should be at most 2-D. A 1-D array with length n will be treated
as a 2-D with shape (1, n)
atol : float
The absolute tolerance for a zero singular value. Singular values
smaller than `atol` are considered to be zero.
rtol : float
The relative tolerance. Singular values less than rtol*smax are
considered to be zero, where smax is the largest singular value.
If both `atol` and `rtol` are positive, the combined tolerance is the
maximum of the two; that is::
tol = max(atol, rtol * smax)
Singular values smaller than `tol` are considered to be zero.
Return value
------------
r : int
The estimated rank of the matrix.
See also
--------
numpy.linalg.matrix_rank
matrix_rank is basically the same as this function, but it does not
provide the option of the absolute tolerance.
"""
A = np.atleast_2d(A)
s = svd(A, compute_uv=False)
tol = max(atol, rtol * s[0])
rank = int((s >= tol).sum())
return rank
def nullspace(A, atol=1e-13, rtol=0):
"""Compute an approximate basis for the nullspace of A.
The algorithm used by this function is based on the singular value
decomposition of `A`.
Parameters
----------
A : ndarray
A should be at most 2-D. A 1-D array with length k will be treated
as a 2-D with shape (1, k)
atol : float
The absolute tolerance for a zero singular value. Singular values
smaller than `atol` are considered to be zero.
rtol : float
The relative tolerance. Singular values less than rtol*smax are
considered to be zero, where smax is the largest singular value.
If both `atol` and `rtol` are positive, the combined tolerance is the
maximum of the two; that is::
tol = max(atol, rtol * smax)
Singular values smaller than `tol` are considered to be zero.
Return value
------------
ns : ndarray
If `A` is an array with shape (m, k), then `ns` will be an array
with shape (k, n), where n is the estimated dimension of the
nullspace of `A`. The columns of `ns` are a basis for the
nullspace; each element in numpy.dot(A, ns) will be approximately
zero.
"""
A = np.atleast_2d(A)
u, s, vh = svd(A)
tol = max(atol, rtol * s[0])
nnz = (s >= tol).sum()
ns = vh[nnz:].conj().T
return ns
这是一个演示脚本。
In [ ]
#!python
import numpy as np
from rank_nullspace import rank, nullspace
def checkit(a):
print "a:"
print a
r = rank(a)
print "rank is", r
ns = nullspace(a)
print "nullspace:"
print ns
if ns.size > 0:
res = np.abs(np.dot(a, ns)).max()
print "max residual is", res
print "-"*25
a = np.array([[1.0, 2.0, 3.0], [4.0, 5.0, 6.0], [7.0, 8.0, 9.0]])
checkit(a)
print "-"*25
a = np.array([[0.0, 2.0, 3.0], [4.0, 5.0, 6.0], [7.0, 8.0, 9.0]])
checkit(a)
print "-"*25
a = np.array([[0.0, 1.0, 2.0, 4.0], [1.0, 2.0, 3.0, 4.0]])
checkit(a)
print "-"*25
a = np.array([[1.0, 1.0j, 2.0+2.0j],
[1.0j, -1.0, -2.0+2.0j],
[0.5, 0.5j, 1.0+1.0j]])
checkit(a)
print "-"*25
以下是脚本的输出。
In [ ]
-------------------------
a:
[[ 1. 2. 3.]
[ 4. 5. 6.]
[ 7. 8. 9.]]
rank is 2
nullspace:
[[-0.40824829]
[ 0.81649658]
[-0.40824829]]
max residual is 4.4408920985e-16
-------------------------
a:
[[ 0. 2. 3.]
[ 4. 5. 6.]
[ 7. 8. 9.]]
rank is 3
nullspace:
[]
-------------------------
a:
[[ 0. 1. 2. 4.]
[ 1. 2. 3. 4.]]
rank is 2
nullspace:
[[-0.48666474 -0.61177492]
[-0.27946883 0.76717915]
[ 0.76613356 -0.15540423]
[-0.31319957 -0.11409267]]
max residual is 3.88578058619e-16
-------------------------
a:
[[ 1.0+0.j 0.0+1.j 2.0+2.j ]
[ 0.0+1.j -1.0+0.j -2.0+2.j ]
[ 0.5+0.j 0.0+0.5j 1.0+1.j ]]
rank is 1
nullspace:
[[ 0.00000000-0.j -0.94868330-0.j ]
[ 0.13333333+0.93333333j 0.00000000-0.10540926j]
[ 0.20000000-0.26666667j 0.21081851-0.21081851j]]
max residual is 1.04295984227e-15
-------------------------
章节作者:WarrenWeckesser